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On zerocurvature representations of evolution equations 
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Institute of Physics, Academy of Sciences, Minsk 12, Belarus 

Received 4 August 1994, in final form 3 January 1995 

Abshaet. For zero-curvature representations ( z c ~ r )  A,-B,- AB+BA=O of evolution 
equations U,= f ( x ,  U, U,, . . . , U . ~ . , J ,  we develop a description which is invariant under gauge 
transfonnations A'=SAS-'-S,S-'  and B'=SBS"'-S,S-', where A, Band Sare matrix 
functions of x, U, U,, U,, . . . . W e  prove that every fixed matrix A of any dimension and 
order (in u.~...~) determines a continual class of evolution equations which admit ZCRS with 
this A. 'Then wequoteexamples illustrating how a dependence of A on an essential parameter 
restricts classes of represented equations. One of our examples shows that some non- 
integrable systems can admit parametric Lax pairs and infinitely many non-trivial conserva- 
tion laws. 

Many remarkable nonlinear partial differential equations of modem mathematical 
physics can be represented as the compatibility condition 

Z = D , A - D , B - [ A ,  B]=O (1) 

(D,+ A)@ =O (D,+ B)@ =O (2) 

for the over-determined system of two linear equations 

where D, and D, are the total derivatives with respect to x and 1, A and B are nt x m 
matrix functions of independent variables x and f ,  dependent variables u(x, f) and finite- 
order derivatives of U, @(x, f) is an m-component column, and square brackets denote 
the commutator [ 1-31, Condition (I), often referred to as the zero-curvafure represen- 
tation (ZCR) due to its geometric interpretation [I] ,  is said to represent an equation in 
U if all solutions U of the equation satisfy (1); The gauge transformafion [I] of matrices 
A and B, namely, 

A' = SAS-' - (4, S)S  -I B'=SBS-' -  (D,S)S-'  (3) 
where S is any M x m  matrix function of x, f, U and derivatives of U, detSZO, causes 
the tensor transformation Z'=SZS-' of ZCR ( I ) ;  therefore two ZCRS, related by (3), 
are considered as equivalent. In soliton theory, where ZCR (1) appears as one of modifi- 
cations of the Lax representation, it is very important that the auxiliary linear problem 
(2) contains a parameter in matrices A and B [I-31. Only 'integrable' equations are 
believed to admit ZCRS with an essential ('spectral') parameter which cannot be removed 
('gauged out') by gauge transformations (3) [4]. Though we use the traditional terms 
'ZCR' and 'gauge transformations' in this paper, our approach to objects ( I )  and (3) 
will have no connection with differential geometry and gauge'field theory: it will be 
based on an analogy between ZCRS and conservation laws. 
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Recently, two strange but similar results on ZCRS appeared in [5 ,6] .  Rabelo and 
Tenenblat [5] studied which of the evolution equations u,=u,,,+f(u, U,, u . ~ ~ )  admit 
ZCRS by 2 x 2 traceless matrices with A of a special form and found (besides known 
integrable equations) that the continual class of equations 

U,= D:P - D&P) (4) 

with arbitrary q inp=u,+q(u) admits ZCR (1) by 

) (5 )  A=-( 1 a ufa ) .='( -aP (PY-u-aliJ 
2 u - a  -a 2 (&-u+a)p f f P  

where a is any constant. Evidently, this ZCR remains valid when we replace p in (4) 
and ( 5 )  by any function p(x ,  U,. . . , uX....J. Alexeyev and Kudryashov 161 studied non- 
abelian pseudopotentials of evolution equation u,= (uz ) ,+u-~  and found that (1) 
with 

represents the continual class of equations 

U,= Dxp f P + w (7) 

where function p(x ,  U,. . . , u . , , ~ )  and constants a,  p and q are arbitrary. Confinual 
classes (4) and (7) are much wider than habitual discrete hierarchies of integrable 
equations. Moreover, when A contains derivatives, the following may happen: matrices 

a p  exp (-U) /3 exp (-2u) 
A=U.~(  a e x p u  -1 O) E = Y -  afexp U - a'p -f+ a p  exp (-U) 

where function f ( x ,  U; . . . , u ~ . . . ~ )  and constants a and p are arbitrary, represent any 
equation u,=f(x,  U, . . . U, ._.. 3. 

In this paper, we will develop a description, invariant under gauge transformations 
(3), for ZCRS of evolution equations. We will prove that euery matrix A(x, U, . . . , u.~.. .~),  
which contains no essential parameter, determines ZCR (1) for a continual class like (4) 
or (7), whereas 'pathological' ZCRS like (8) arise due to equivalence (3) between A and 
"0. Then we will quote three examples illustrating three different structures of  classes 
of equations represented by ( I )  an essential parameter in A. One of our examples 
will show that some non-integrable systems can admit ZCRS with an essential parameter 
and possess infinitely many non-trivial conservation laws. 

There are many similarities between ZCRS and conservation laws [7]. On the analogy 
of adding trivial conservation laws of the first kind 181, we can replace in (I)  pair (A ,  E) 
by pair ( A + A o ,  B+&)  with any matrices A. and Eo such that Ao=O and Eo=O for 
all solutions of the represented equation, thus obtaining an equivalent ZCR. (Equiva- 
lence (3) resembles adding trivial conservation laws of the second kind [SI.) Therefore, 
studying ZCRS of evolution equations, we can choose A and B to be matrix functions 
of I, x, U, U,, . . . , u . ~ . , . ~  only. Any explicit dependence of A on t can be treated as a 
special case Of zcRs for systems of evolution equations by introducing additional depen- 
dent variable v ,  U, = 1. Hence, we do not lose generality, considering ZCR (1) of evolution 
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equation 

U, =f (x, U, U1 3 . . . , u.) (9) 

by m x m matrices A(x, U, U], . . . , U,) and B(n, U, U], . . . , U,+,,- ]), uk=aku/a2,  
k=O, 1,2, .  . . , uo=u (possible dependence offand B on t can easily be restored in our 
final results). In the set of all such A and B, gauge transformations are defined by (3) 
with s = s ( x , u , .  . ., ui), D , = a l a x + & , u k i l a k  and ~ , = ~ ? = ~ ( ~ p ) a k ,  where a,= 
ala&. ZCR (1) is admitted by (9) if, and'only if,'A, Band f satisfy the condition 

where operator V is defined as V M = D , M +  [A ,  M ]  for any matrix M .  Note that (IO) 
must be an identity in U, not an ordinary ,differential equation restricting solutions of 
(9), therefore we can consider variables x, U, U,, u2, . . . as mutually independent and 
thus treat ZCRS of evolution equations algebraically. Using identity ( D x d ) M =  
V ( d M )  - dVM valid for any function d and matrix M ,  we can rewrite ( IO)  as 

fC= V P  (11) 
where 

i 

c= 1 ( -Vk(akA)  (12) 
k=O 

i k  
P = B -  1 1 ( D : - y ) ( - v ) ' - y a k A ) .  

k = l  i=I 

On the analogy of conservation laws [PI, we will refer to (1  1) as the chaiyteristicform 
of ZCR (1) and to matrix C (12) as the characteristic of A .  

Tlreoreem 1. Characteristic C and matrix P are tensors under gauge transformations 
(3). C'=SCS-' and P'=SPS-'. Characteristic C is zero if, and only if, matrix 
S(x, U,. . . , ui - l )  exists such~that A = S ' D , S ,  i.e. A is.equivalent to A'=O. 

Proof. Direct calculations show that C and P are tensors. If A is equivalent to A ' = O ,  
then C ' = O ,  and C=O too. If C=O, find that a;A=O, check the existence of S such 
that the order of A' in (3) is i -  1 or less, then make induction by i down. 

Example I .  Take matrix A from 'pathological' ZCR (8), substitute it to (12) and 
calculate that C=O. Then find matrix S such that (3) changes (8) into A'=O 
and B'=constant. The characteristic form (11) of ZCR (1) makes clear that any A 
with C=O generates ~a ZCR for any equation (9), but all such ZCRS are trivial due to 
theorem 1. 

Thus we have seen one of advantages of the characteristic form (1 I ) :  the character- 
istic (12) recognizes trivial ZCRS automatically. Ohter advantages of (1 I), its covari- 
antness and simplicity, allow us to prove the following. 

Theorem 2. For every m x n z  matrix A(x ,  U, U,, . . . , U;) of any dimension nz and order 
i, there exists a continual class of matrices B such that (1) is a ZCR for any evolution 
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equation of the continual class 

U,= (D:+a,- I D:-' +. ,. .+at DX+ao)p+ 91 a + .  . . + vSqr (14) 
where function p ( x ,  U, u I , .  . . , uj), order j and constants 91,. . . , qs are arbitrary, 
whereas integers r and s and functions ao, . . . , a,-] and q1 , . . . , q. of x, U ,  u I ,  . . . are 
explicitly determined by A (as described in the proof). 

Proox Use the characteristic form ( 1  I )  of ZCR ( 1 ) .  For any given A and corresponding 
C (12), all matiices P must be found such that V P  is proportional to C; then (1 1) is 
simply a definition of allf for represented equations (9), and B is determined by (13). 
Let M be the set of all m x m matrices M(x, U, U], . . .). M is an mz-dimensional linear 
vector space with operations of adding two matrices and multiplying a matrix by 
any function d(x, u , ~ u I , .  . .). The operator V, VM=D. ,M+[A,  MI, maps M into M. 
(Warning: V is not a linear operator in M because V ( d M )  =dVM if d= constant only.) 
For the characteristic C (12), consider the sequence of matrices VkC, k=O, 1 ,2 , .  . . . 
Since M is finite-dimensional, an integer r ( r < d )  and functions co, c l ,  . . . , c,-] of 
x, U, uI , . . . exist such that C, V C ,  . . . , V'-'C are linearly independent and 

I- I 

V'C= C,V'C. (15) 
k-0 

Under gauge transformations of A ,  VkC are tensors, therefore ck are invariants. (Note: 
r=O for trivial A only, when ( 1 5 )  is C=O.) Define @, @cM, as the +dimensional linear 
vector subspace with the cyclic basis C, V C ,  . . . , V'-'C, @ being invariant with respect 
to operator V .  Consider the set Q of all matrices Q such that QEM and VQ&. In 
QmodC, there are not more than s (s<m2-r) linearly independent matrices 
e l , .  . . , a. (If s=O, a=@).) Prove that these & can be chosen to satisfy V&= 
q k C  with some functions qk(x, U, U], . . .), k= I , .  . . , s, and that any Q, Q e Q ,  can be 
decomposed as Q= Qo+ 91 Q l  +. . . + gy&, where q I ,  . . . , q& are consfants and QoeC 
(therefore Q is not a linear vector space in that sense as M and 6) are). The singular 
basis QI , . . . , Q3 and invariants q l ,  . . . , qs are determined by A up to transformations 
&=%I yk& and &=ZmI yk,q/ with any constant non-degenerate s x s matrix yk/. 
Now return to ( 1  1 ) .  Since V P = ~ C E @ ,  PEQ. Therefore P can be decomposed as 

I- I 

p= p k v k c +  2 9kQk (16) 
k - 0  k- I 

with some functionspk(x, U, U], . . .) and constants 9 k .  Substitute (16) to ( 1  1) and find 
the recursion for pk 

Pk- I=-&Pk- CkPr-  1 k = r -  l , r - 2 , .  . . , I  (17) 
and the expression forf 

f= DLp + 0:- '(c,- I p )  - D:-'(cr-7p) + D:-3(c,-3p) - . . . 
+ (-l)'-'cop + 91 41 +. . . + qsqs (18) 

where function p ( x ,  U, . . . , ui) = (-1)'-'pr- I ,  order j and constants p l ,  . . . q,7 are not 
fixed. Relation between (18) and (14) is evident. Matrix B is determined by (13) and 
(16)-(18). 

Consequence. For any fttife set of any finite-order functions 4 ,  . . . , d2,, of x, U, U,, 
UZ, . . . , a continual class of evolution equations exists such that every equation of this 
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class has conserved densities dl ,  . . . , d,. Indeed, if A and B are diagonal matrices, A = 
diag(dl,. . . , &), then ZCR ( 1) is nothing but m conservation laws for corresponding 
class (14). Note that C=diag(E(dl), . . . ,E(&)), where E is the Euler operator 181. 

Example 2. Take matrix A from (6), calculate C=aoA and VC, and find that VC= 
*C, i.e. r= 1 and CO= f 1 for the cyclic basis. For the singular basis, find that s=2, 
Ql =diag(l, 0), q l = y  Q2=diag(l, l), q2=0. Then construct f and B, which will be the 
same as in (7) and (6). Note that invariants of A ,  i.e. co, q1 and q2, do not contain 
parameter a. Prove that a can be removed from A by ( 3 ) .  

Example 3. Take A from (5). Show that C and VC are independent but V2C= -uVC, 
i.e. r=2,-co=O, cI=-u. Then find s=l ,  Ql=diag(l, I), ql=O. Since only traceless 
matrices were considered in [5], Ql is absent from B (5), but this has no effect on f (4) 
because q1 =O. Note that invariants co, cI and q1 do not contain a .  Remove a from A 
by (3). 

It should be stressed that theorem 2 treats A as afxed matrix. Though A depends 
on parameter a in examples 2 and 3, this dependence is caused only by gauge trans- 
formations and has no effect on invariants co,  . . . , c , - ~  and ql .  . . . , q3, therefore the 
represented classes are continual as if A contains no parameter at all. On the contrary, 
if the invariants depend on parameter a ,  then a is an.essential parameter in A .  (More 
strictly, if none of co, . . . , c,-~ depend on a, we must check first that a cannot be 
removed from q1 , . . . , q$ by new choice of the singular basis.) Theorem 2 is useful in 
this case too. Indeed, for every fixed value of a in A ,  theorem 2 provides us with explicit 
expressions for all admissible f and B in terms of arbitrary function p and constants 
vl, . . . , vS. When a changes, p and pl, . . . , qr may change with a ,  but the represented 
equation (9) must be unchanged. The required dependence of p and q,, . . . , vs on a 
is determined by the condition af/aa=O imposed on f (18). Now, let us.see how, this 
condition restricts classes of represented equations when A contains essential a .  Since 
the construction of B is evident. we omit it thereafter. 

Example 4. Consider 

A = t  ;) 
with parameter a. For the cyclic basis, find r=3, co=2aul, cl=4au, cz=O. For 
thesingular basis, find s=l,  Ql=diag(l. I), q l = O .  Then find from (18) that 
f=(D:-4auDx-2aul)p(a, x, U,. . . , uj ) .  Analyse howp contains a by applying 8, to 
condition af/aa=o, k = j + 3 ,  j+2 . .  . . , I ,  and find that p = ( p x 2 +  vx+p)a- l+  
&,hkak is necessary, where 1 is an integer, p, v and p are constants, and ilk 

are functions of x, U, uI , .  . . . Then af/aa=o gives the recursion for hk, 

f :  
it k - 4 u  - I  - l / 2 ~ - I  .~ U - 1 / 2 ~ 3 h  .~ k+l ,k=l- l ,1-2 ,..., 0,h,=constantu-l",andh0determines 

f=-4(2px+~)~-2(px*+ vx+p)ul+D:ho. (20) 
Thus, (I) with A (19) represents a discrete hierarchy. In (20), term D:ho gives the 
hierarchy of the Dym-Kruskal equation U,= ( u - ' / ~ ) ~ . ~ ~  with recursion operator 
R = D ~ ~ - ' / ~ D ; ' u - ' ' ~ ~ ( p r o v e  that A (19) can be brought by (3) into the Wadati-Konno- 
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Ichicawa form [2]), but terms with p, v and p look strange. What is this 'extended 
Dym-Kruskal hierarchy'? Make the chain of two Miura transformations proposed 
by Ibragimov [9] for the Dyn-Druskal equation: (i) x=v(y ,  t )  and u=u,L2. and then 
(ii) w(y ,  f)=~;'u,., .~-~u;~u~,..  This chain will connect the whole hierarchy (20) with 
the Korteweg-de Vries hierarchy (in w), and all 'strange' terms with p, v and p will 
disappear at transformation (ii). 

Example 5. Consider 

A = ( a  au -a I )  

with parameter a. Find that r=3, c0=2aul, cl=4a(u+a), c2=0, s= I ,  Ql=diag(l, I), 
q1 =0, f=[D:-4a(u+a)D,-2aul ]p(a ,  x, U,. . . , uj). Apply 8, to condition af /aa=  
0, k=j+3,  ..., 1,andshow thatp=(p?+vx+p)a-'+Ck-ohkakisnecessary,where 
p, v ,  and p are constants, 1 is an integer, and h, are functions of x, U, uI, . . . . Then 
af/aa =O leads to 

~ = - ~ ( ~ ~ X + V ) U - ~ ( ~ ? + V X + P ) U I + D ? ~ ~  (22) 
D:hl =(4uDX+2~i)ho+4(2p~+ V )  (23) 
4D,hk+ (4uDX+ 2U1)hk+ I -D:hk+,=O k=l , l - l , .  . . , O  (24) 

I whereh,+I=hl+2=Oin(24).Findfrom(24) thath/=o=constant, h+ l=-Tcru+ . . . ,  

hl+= &ouu, + . . . , etc, where only higher-order terms are shown. Then (23) leads to 
hi=. . .=ho=O and p=v=O. Therefore (1) with A (21) represents fhe only equation, 
u,=constant U,. 

Exainple 6. Consider 

3 2  1 5 ~ / - ~ = s u u  +.. . , h r - s = - S q ~ 2 + . .  ., hi-4=Eo~uz+..  ., h/-5=-&q+. . . . , 

where u=u(x ,  t), u=u(x ,  1). and a is a parameter. Which systems of the two evolution 
equations u,=fIx,  U, U] and u,=g[x, U, U] admit ZCR (1) with A (25)? (Here and below 
[x, U, U] denotes any finite set ofx, uk and uk, k=O, I ,  2 , .  . . , uk=aku/aX, u k = b u / a 2 ,  
U O = U ,  V O = U . )  The whole technique, which we have developed for scalar evolution 
equations, can be applied to systems with minor modifications. Now the characteristic 
form (11)  ofzcR (1) is 

fC" +gc, = v P (26) 
where C. = aA/au, CO= aA/av and P [ x ,  U, U] = B because A (25) contains no derivatives. 
Two characteristics C, and CO and operator V generate cyclic basis C,, C,, VC, with 
fwo closure equations 

vc.= -2C,+2UC. 
(27) 

VzC,,= 8(u + a)C,- [2u, + 840 + a)]C.- 2uVC". 

Since coefficients of (27) contain a ,  this parameter is essential. Singular basis 
Q=diag(l, 1) has no effect on f and g because VQ=O. Decompose P as P= 
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rC,+qC,-pVC,, wherep, q and r are functions of [x, U, V I .  Then find from (26) and 
(27) that r=(Dx-2u)p and 

(28) 

(29) 

f= [D:- 2 ~ 0 , -  2 ~ 1  - S(U + a ) ] p -  2q 

g= [2v1 + 8u(v+ a ) ] p +  (4,+2u)q 

wherep and q remain arbitrary. Thus, if a is fixed, ZCR ( I )  with A (25) is admitted by 
a continual class of systems determined by (28) and (29). If a is free, conditions a f p a  = 
ag/aa = 0 must be satisfied. Take (28) as a definition of q in terms off and p ,  then (29) 
is g=- f (D . ,+2u) f+h ,  where h = [ f D : - 4 ( w + a ) D X - 2 w l ] p ,  w = u + t ( u ~ + d ) ,  
wk= Dtw .  Analyse condition a h p a  =0, provep to be a polynomial in a with coefficients 
determined recursively, and then find h explicitly: h=R”O, where 
R = D : - 8 w -  4 w , D ; ‘ ,  n=O, 1, 2 , .  . . , D;’O=constant. Thus, h is a function of w I ,  
wz,  . . . only, h=h[w],  R is the recursion operator of the Korteweg-de Vries equation 
w,= w3- 12ww1, therefore h[w] is any constant-coefficient linear superposition of expres- 
sions w I ,  w3-12wwI,  w5-Z0ww3-40w,ivz+ 1 2 0 d w l ,  etc. Consequently, ZCR ( 1 )  with 
A (25), which contains essenlial parameter a, is admitted by every system of. the 
continual class 

u,=f v - h - ’  I -  2(D.,+2ulf (30) 
where function f ( x ,  U, uI, U’, . . . , v,  V I ,  q, . . .) is arbitrary, and h[w] has been deter- 
mined above. 

In conclusion, let us focus our attention on the strange result of example 6: a 
continual class of systems admits a z c ~ ~ w i t h  an essential parameter. Moreover, all 
systems (30) possess infinitely many non-trivial conservation laws for the following 
reason. We find from (30) that w satisfies the equation w,=h[w] which is a member of 
the Korteweg-de Vries hierarchy., Since w,=h[w] is a bi-Hamiltonian equation [SI, it 
has at least the countable set of non-trivial conserved densities: 4 w ] = w ,  fw’, 
f & + 2 d ,  f&+ IOww:+ low4,.  . . (i.e. d, are equal to Dx of some functions of w,  w l r  
wz,  . . . , while non-trivial d are Dx of no functions of w, wrI ,  w2 ,  . . . ; equation w,= 
constant x ivI has the continuum of conserved densities d(w, w ,  wz, . . .) with any d ) .  
Replacing w by U+ f u ,  + ;U’ in these d [ w ] ,  we get infinitely many conserved densities 
d[u+ f u l  + sd] for every system (30) which are all non-trivial (i.e. not equal to Dx 
of some functions of U, u I ,  uz , .  . .~, v ,  V I ,  V Z , .  . .) because d [ w ]  are non-trivial and 
aw/av= 1. Can we conclude that all systems (30) are ‘integrable’? Undoubtedly, no. 
Though some of systems (30) may turn out to be integrable by the inverse scattering 
transform or exact linearization, we are unable to believe that every system of continual 
class (30) is integrable in some reasonable sense: if one had a technique of integrating 
(30) for allf, one would be able to integrate all evolution equations (9). 
Our confidence in that most of systems (30) are non-integrable can be supported 

by the following result of the Painlev6 analysis. Let us consider the five-parameter set 
of systems 

I 

u,=u3-6$uI - 12vul +a 

v,= u3 - 120ul - 6 d v ,  - zDxa- ua 
t (31) 

wherea=~ul+vvl+pu2+au2+.ruvwithanyconstantsp, v , p ,  r a n d  r.Systems (31) 
lielong to class (30):fis evident, and h [ a ] ~ = w , -  12wwl. Let us perform the Painlevd 
analysis of (31) along the Weiss-Kruskal algorithm [IO]. Equations (31) are normal 



2868 S Yu Sakouich 

systems with noncharacteristic hypersurfaces determined by q(x, t ) = O  and qx#O [ S I ,  
and we put qx=l .  Substituting expansions u=Z& &(t)@+' and u=C,"co &k( t )qk+k  
( K  and I are constants) into (31), we find the following branches to he tested: (i) K =  
I =  - 1, So= & 1, c0(t) is arbitrary, positions of resonances are k= - 1, 0, 1, 3, 4, 5; 
(ii) ' K =  -1 ,  I=4 ,  So= f l ,  EO(f) is arbitrary, resonances k =  - 5 ,  -4, -1, 0, 3, 4; 
(iii) ~ = 5 ,  I =  -2 ,  S,(t) is arbitrary, c0=l, resonances k= -7, -5, -1, 0,4, 6.  Then 
we find recursion relations for 6 k  and &k, and check compatibility conditions at reso- 
nances. At resonance 1 of branch (i), where arbitrary function ~ ~ ( t )  appears, we get 
condition 2 p + p - ( 2 v + r ) ~ ~ + u $ = 0 .  If this condition is not satisfied for any c0(t), 
solutions of (31) possess non-dominant logarithmic singularities. Therefore we put p = 
- 2 p ,  r= - 2 v  and a=O. Then we get condition 5 p & 0 + 2 ~ ( & ~ - & ) = 0  at resonance 3 
of branch (i), where arbitrary function &(t) appears. We can conclude now that all 
systems (31) with afO fail to pass the Painlev; test for integrability because of non- 
dominant logarithmic branching of their solutions. But system (31) with a=O passes 
the Painlev6 test well: compatibility conditions turn out to be identities at all resonances 
of all branches. System (31) with n=O is integrable: it is mapped by the Miura trans- 
formation { w = u + - i u l + i i u ,  z = v - & ~ ~ + & ? }  into the system {w,=wg-12wwI, 
z,=z3- 12221} of two non-coupled Korteweg-de Vries equations (therefore (31) with 
a=O possesses at least two countable sets of non-trivial conserved densities: 
d[u+ $ U ,  + 4 9 ,  common for all systems (30), and additional d[u- ;U, + fu2]) .  As for 
(31) with a#O, the nondominant logarithms are generally considered as a reliable 
indicator of non-integrability [ IO ,  1 I]. 

Fortunately, gauge transformations (3) can shed some light on the strangeness of 
A (25).  Let us look at the following transforming matrix Sand resultant matrix A': 

I 1 2  

We see that two dependent variables, U and U, have merged into one, w, so that two 
equations of system (30) merge into one, w,=h[w], represented by the eguivdent ZCR. 
Hence, matrix A (25) contains efec'ecriuely one dependent variable, but not two. This 
phenomenon requires further investigation. 
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